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INFORMATION ABOUT MOVES IN EXTENSIVE GAMES: I*

by

Pradeep Dubey and Mamoru Kaneko

1. INTRODUCTION

In this paper we explore the relation between information patterns

and Nash Equilibria in extensive games. By information we mean what players

know about each other's moves. Also we confine ourselves throughout to

pure strategies. Our main result is that in games in which the level of

information is intrinsically "low," the Nash outcomes are invariant of

the information.

The extensive game model is of fundamental importance and captures

the interplay between information-and decision-making. Yet we find that

its definition, as set forth by Kuhn-tn [6], is insufficient from certain

points-of-view. It is unable to incorporate games with a continuum of

players. Also it often makes for an unnaturally complex representation.

For instance, a game in which n players move simultaneously can be desc-

ribed in the Kuhn framework. But first we would have to order the players

artificially and then have them move in sequence with suitably enlarged

information sets. If we try to carry this out when n is not finite but

a continuum, the difficulty of the procedure becomes clear. Therefore.-

*This work was supported by O.N.R. Grant NOOO14-77-051issued under Con-
tract Authority NR 047-006.

1Chance moves are in essence absent though they can be inserted in certain
special circumstances--see Remark (6).
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we are led to develop a variant model which has the feature that several

players can move simultaneously at any position in the Same. Games of the

type in [61 are, of course, included as a special case of our set-up.

In Section 2 we develop our model and illustrate it with examples.

In Section 3 we show that among all possible information patterns in a

game there is a unique minimal one. This is done under the assumption of

perfect recall. Otherwise the conclusion is false. (See the example in

Section 3.)

In the rest of the paper, we focus on the effect on Nash Equilibria

(N.E.) that is caused solely by changes in the information pattern of an

extensive game. In Section 4.2 we show that if information is refined then

the N.E.'s of the coarse game do not disappear. But the converse is not

true: in general there is a rapid proliferation of new N.E.'s. In the

next two sections, Section 4.3 and Section 4.4, we explore conditions under

which this proliferation is arrested. The notion of "no informational

influence" is introduced. It says that if a single player unilaterally

changes his strategy, then the resultant new path passes through the same

information sets of the others as the old one did. This is a purely set-

theoretic condition and can hold not only in non-atomic, but also in finite,

games--see the example in Section 4.3. We prove that holds then a

Nash outcome of the refined game is also that of its coat-- .rm, i.e.,

is not a "new" N.E. brought about by the increased stratagic (threat) pos-

sibilities. When we turn to non-atomic games, no informational influence

holds in full force and we get: Nash outcomes are invariant of the infor-

mation pattern. (See Section 5.2.) This leads to the "Anti-folk Theorem"

(Section 5.4). It also has some relevance to strategic market games

(Section 5.4).
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No informational influence arises naturally in games that involve

a "large number of small players," and constitutes an essential criterion

for the onset of "perfect competition." The very notion of a Nash Equi-
1

librium becomes more viable in its presence. (If his unilateral change

of strategy can be observed by others, why should a player imagine that

they will stay put when he changes?) Our result reveals that then the

FN.E.'s are "robust" to changes in information. It also has another upshot:

the fine distinctions raised by the notion of "perfect" equilibrium ([8])

become irrelevant in this setting.

2. EXTENSIVE GAMES IN SIMULTANEOUS HOVE FORM

To motivate the definition it will help to consider an example.

Let the player-set N be the [0,1] closed interval equipped with the

Lebesgue measure. Consider the subsets A - [0, 1/4) , B - [1/4, 1/2) ,

C - [1/2, 3/4) and D - [3/4, 11 . The moves available to these players

are as follows. A player in A (B,C,D) can select any real numbers in

the interval [0,10) ([0,5], [0,1], [0,1]) . A and B move simultan-

eously at the start, after which C and D move. Only measurable choices

by A U B and by C U D are considered. The players in C can observe

the integral of the choice made by A U B . On the other hand, those in

D can observe the entire measurable function of A U B's choice, upto

null sets. The payoffs depend on the "play" induced by everyone's choice.

We wish to consider games of this type, as well as repetitions of

them (possibly infinite in number). They arise naturally In several con-

texts. It is clear that the Kuhn formulation cannot easily handle them.

This motivates our new model. After describing it, we shall return to , ,b

this example and see how it is expressed in terms of our model. X

. . / o.,. , , . ' " "1e Ra (5).
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2.1. The Basic Definition

An extensive name r in simultaneous move form is a seven-tuple:

(2.1) r - (N, X, it, {XEX, , {hi}i6N, {Ii~iEN)

Let us explain our symbols. (Unless otherwise stated, all sets are assumed

to be non-empty.)

(i) N is the set of all players.

(ii) X is the set of all positions in the game, one of which, x0

is distinguished and represents the start of the game.

(iii) w maps X to subsets of N . For x E X , w(x) is the set of

players who move simultaneously at the position x .

(iv) For each x E X , Sx is a set of functions from r(x) to some

set Y . We assume that Y(x) -*S = . If (x)in4,

then x is called an ending position of the game F • Given sx E Sx ,

t E yX and i E r(x) , denote by (si, t) the function from

it(x) to Yx which assigns t to £ , and agrees with ax  else-

where. Also let s9 stand for sx(i) . Our assumption on S X is:

(2.2) if x, E Sx , then (sX1, rx) 6 Sx for all i E w(x)

Define Sx - (s: sx  Sx ) for i E w(x) . Note that, by (2.2),

(2.3) if t e S£ and ex E 5X , then (sx , t) E Sx
€i

and, 1 by (2.3),

(2.4) if w(x) is finite, S 1 - S

fn denotes a Cartesian product.
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Sx is the set of moves available to player ± at the poito x
x --

and S x is the set of move selections at x by the players in

,r(x) that are feasible in the Same.

(v) 0 links positions to moves. Put X* - X.-{x0) Let F be the

x 0 x KM
collection of all finite sequences (s , 1 , ... , s ) with

s kE S xk for k- 0, 1, ..., m. Then 0 is an Injection,

* X* .. F,

such that:

x x
(b) if (AE ** l OmE(X) te

x x1 x M1 X

( s 0 1 ,~ I, s xm -1 - O Nx )

K0 x x
(c) if 4(X)- (s ,...,s ) and s ESx, then

(s x 0...,s I sx) E O(X*)

Since 0 is an injection, we will sometimes identify x with

OWx , and say that x - (s 0, ...,5 m ) for x E X* . This should

cause no confusion. Also, if O(x) a (s , ... ,a s ) we will write

(X, 5K) for (s 0m .. , ,8X)

x0 Xm(vi) An infinite sequence (s , .,s . or a finite sequence

YO y1  Yk iscle . 1 o h(r , r ,..r ),where yoz O icaldap& fth

game r if

(a) (a0  .. , 6) O (X*) for all L. 0, 1,

1This also is an "outcome" in our context.
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or

(b) (r O , ...,r y ) C (X*) for 1 -0, ... , k and w(z) - ,

where z (r y , ... ,r y ) .

Denote the set of all plays of r by P(r) . Each hi is simply

a real-valued function on P(r) and gives the payoff to player i

for any play of the game.

(vii) Ii is a partition of X, - {x E X i W (x)1 and is called the

information partition of player i . If x and y are two positions

in the same set of player i's partition (x, y E u C I i  , then

this means that i cannot distinguish between x and y . It

is natural to impose some constraints on the {IiliEN in view of

this interpretation. First we require

(2.5) if x, y E u £ I i , then S = .

If this were not so, then i could distinguish intrinsically be-

tween x and y . Given (2.5) we will, without confusion, talk

of the set of moves Su which is available to i at (each position
i

in) his information set u

To describe the other property of (1 i I we need to develop
xO x s

some more terminology. If x - (s, ... , s m) and y E (xo, ... , x3
1

we will say that x follows from y and write this as y 4 x

(Then 4 is a partial order on X with x0 as its unique

minimal element.) Furthermore, if t - sy , then x follows

from y via the move t of player i (in symbols: y4 x ). And
t

if, in addition y E u I , write u.4 x , as well as u. x
t
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The other condition on {Ii) iEN is given by:

(2.6) If x, y E u E Ii and v< x (for some v E Ii and t E St)
t

then v < y
t

It goes by the name of "perfect recall". It says that, at any position,

each player can fully recall the entire history of his previous moves.

This completes the definition of the game r

Sometimes we will need to talk only about the five tuple:

(N, X, iT, {S 1x}X, P) , and will call it the extensive form of the game

r , and denote it by r_ . The set of plays P(r) is in fact now better

written P(F_) because it does not depend on the payoffs or the informa-

tion pattern.

2.2. Examples

Let us formulate the example given at the start in our model. Let

X**= {t : t(') is a measurable function on A U B such that t(i) E [0,10]

for all i E A and t(i) E [0,5] for all i E B) and F - {t : t(.) is

a measurable function on C U D such that t(i) E (0,1] for all i E C U D)

Then X - {x0 } U X** U (X** x F) . The function w(-) is given by

- (x) -A U B (x) -C U D for all x E X** and w(x)- for all
x E X** x F. Each YX is the reals. {Sx)XEx  is given by S - X**

S- F for all x E X** and Sx -, for all x E X** x F. Note that

0 is the identity map from X - {x0 } to X - xO } . The information

pattern (liliEN is as follows:



S]

I . {x 0  for all i E A U B

X 0x0x0 x 0 .XOI, {{s E X**( SxO) :I i dui-f -8

for all i E C; and

x 0  x 0  __?x 0  x2 0

I, M {{S E X** : P({i E A U B : s 1 si }) -O *

for all i E D.

The payoff functions hi are just real-valued functions on the set of

x X
plays (s , sx ) (x s 0

One could associate a tree to r by letting the branches be given

by the binary relation on X

x y if x ),y but not x ) z > y for any z E X.

The tree for the above example will then be:

X**

X x F

FIGURE 1



9

Because of its infinite structure the example can not be fully Ilus-

trated. But if all the constituents of r are finite, then we can draw

a tree which will completely describe its extensive form at a glance.

Consider:

N - (1,2,3,4) ; x - {xO, x1, ...,x20)

w(x0 ) [ (1,2), w(xt) - (3,4) for t 1, 2, 3, 4 , and

w(xt) = * for t - 5, ..., 20;

= X {(all 81)9 (al' 02)9 (a29 01)9 (Q29 82)1 i.e.,

x0  x0
S1  = ( 1 , c{2} and S2  - (1,2 } ;

sxt

S { ((i1 61)' (Y1, 62), (Y2 1 61), (Y2, 62)) 1 i.e.,

S3  = {yI, y2) and S4  w{6 1, 62) for t - 1, 2, 3, 4;

xt

S -, for t 5, ..., 20;

O(x1 ) - (a, 81) , 9(x2) - (ol, B2) , O(x3) - (0 2 , 01 )

O(x4 ) - (021 82) ' etc.;

1 1= 12 = {{x})) , 13 - (xl, x2), {x3, x4)) and

14 - {(xl, X2 , x3 }, (X4)

The tree of this Same is:

1.
U _



..... r
r  

-,..... ............. ...

x5  x2 0

019' 6" 1) Y2162) (Y1 161 (Y2'62)

------------- ----------- ------------------- %

*x 33~
% ------- --------------- ----

(at (ao (a2,
1l,B2)

FIGURE 2

2.3. The Problem of Reduction

If the game r satisfies:

(i) IN1 is finite,1

(ii) Ij(x)I < 1 for all x

(iii) ISXI is finite for all x

(iv) there is no infinite play,

then it corresponds to a "Kuhn-type" game as formulated in [6].

However every finite game can also be cast in the Kuhn format. For

instance, the game of Figure 2 may be given an alternative description as

in Figure 3 without changing any of its game-theoretical features. But

this is at the expense of enlarging the informational structure.

1 IS! denotes the cardinality of the set S

hi
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2 //
4 4

r Y2 yl I 2 Y2 ' 1 "Y., "2

3 3

FIGURE 3

In contrast, because of the possibility of simultaneous moves in

our model, the representation of this structure was mope concise in Figure

2. We can "reduce" Figure 3 to Figure 2. This immediately raises the

question: is there, for any game, a unique completely reduced form? We

have not yet quite formulated the question in precise terms, but we sus-

pect that its answer is "Yes." We plan to look into this in a future

paper.
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2.4. Elimination of Ending Positions

For simplicity of notation we will 2ssume that r has no ending

positions. This is done without loss of generality. For each ending

position x of F add an infinite sequence (xi, x2, ...) to x , and

extend the game as follows:

(i) For all I -1, 2,...

1(x) = (x£) = N

ISXI - ISX~l- 1

O x ) - ((x), sx l s x  )

xx

(ii) The payoff at x is now attached to the play (0(x), s , s , ... , s , ..

x2

xli

FIGURE 4
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2.5. Remarks

(1) A somewhat weaker requirement than (2.6) is:

(2.7) No position follows another within an information set,

i.e., if x, y E u E I i  then it is not the case that x 4. y

Clearly (2.6) implies (2.7) but not vice-versa. We postulate (2.6)

as a fundamental defining property of a game for reasons given in the

next remark. However all our Propositions, with the exception of

Proposition 1, continue to hold by the same proofs if (2.6) is re-

placed by (2.7).

(2) In [6], the "story" told to support (2.7) is that the players have

distinct "agents" on each of their information sets. Therefore the

violation of (2.7) would imply lapse of memory by an agent, and this

is not to be tolerated.

We prefer to extend this logic to the player himself and to think*

of him as a game-theoreti : individual who has no such shortcomings.

This inexorably forces us to postulate the condition (2.6) of

perfect recall. Thus, in contrast with [6], we would rather think

of bridge as a 4-person game with perfect recall, in which the two

players of any team have identical payoff functions.
1

1For a further discussion, see [8, Section 1,
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3. THE MINIMAL AND MAXIMAL INFORMATION PATTERNS

Let us consider the six-tuple

T - (N, X, w, {Sx EX , (hili EN)

and denote by A(T) the set of all games obtained from T by adding all

possible information patterns (IiiEN I subject to conditions (2.5) and

(2.6).

Consider r, r* E A(T) where--in careless notation-- r - {ItI
i iEN

and r* {ii N . We will say that r is a refinement of r (or

r is a coarsening of r* ) if each I* is obtained by a refinement of

Ii , i.e., for any v E , v - U v* . In this case we will write

~i*v*AIvv*nvo

r r* . It is clear that

(a) -4 is a partial order on A(T)

(b) 4 has a unique maximal element, namely (IiiEN , with

I, w {(x) : x E XI

Our main result in this section is that -3 also has a unique minimal ele-

ment in A(T) . To pave the way for this we need two lemmas.

2
Lenma 1. Let {rA)AEA be a totally ordered subset of -4 in A(T)

Then there exists a r in A(T) such that r-4 r for every A E A

Proof. Let rA ( {Ii iEN for A E A . For any I E N , x E X and

AE A , put

I W - the information set in I which contains x

1Actually the minimal and maximal information patterns are Independent of
the payoffs {hi)LEN and pertain only to the extensive form.

2See the Appendix.

I )
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Let Ii(x) - U I (x) . We submit that the Ii(x) yield an Information
I XEA I

partition for i on T . Since U Ix) X for any A, we get

(c) U I - X
xEXi

Suppose z E Ii(x) and Ii(z) 1 1Px) . Since it is clear that

Ii(z) q Ii(x) , we can take y E Ii(z).Ii(x) . Then y E If (z) and
A2

z E 1 1 (x) for some A and A in A . Pick A* E 0,l' x2I such that

r r i  for i = 1, 2 . (Clearly this can be done.) But then

z E 2 C I(XW and y E 1(Z) a I*(z) Since Ii  is an infor-z€I( Ii (x n Ii  z

mation partition, z E I*(x) implies I (Z) - I *(x) . But then

y I x) , a fortoiri y E Ii(x) , a contradiction. We have proved

(d) The sets {I(x) : x XI are either equal or disjoint.

From (c) and (d) it follows that if we define I, - {I (x) : x E X then

we get a partition of Xi . We will now verify that Ii  satisfies condi-

tions (2.5) and (2.6). If y, z E Iix) , then y 6 I (x) and z E I (x)
for some A and X in A . But then Sy - , which

1  z 2  S1Scan Z 5

implies Sy - S . This verifies (2.5) for Ii

Suppose y, z E Iix) and v A y for some v E I and t E S,
I ~ t

i.e., y' ( y for some y' E v . Then there are X1  and A2  in A

1  2A2

such that y Ii Cx) and z E I i (x) . Pick A* E {A1 , A2) such that

A* xAk X* Akr -4 r for k- 1, 2 . Since Ii6 Ii (x) for

k - 1, 2, y and z are in AI(x) . By (2.6) there is a z' E I *(yW)

such that z' J z . Of course, I *(y') v , which implies v 4 z
t t
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Take the game r obtained by adding the information partition

{Ii)iEN  to T . We just checked that r E A(T) . It is obvious from the

construction of r that r-3 r for any A 6 A . Q.E.D.

Lemma 2. For any r' and r" in A(T) , there exists a r in A(T)

such that r* - r' and r*-; r

Proof. Put r,'= {Iii N' and r" - {Ii~iEN " Define the binary relation

Bi C Xi x Xi by:

x,y E v I

(x,y) E 01- or

Ij

Note that 0 is symmetric and reflexive.' Let B be the set of all
i I

equivalence relations 8' on X, such that CI . Put

E:Bi

Observe that the intersection Is nonempty because X x XI E Bi , and--

by definition-- 81 a 8*. It is easily checked that an intersection of
i*I.

equivalence relations is itself an equivalence relation. Thus 8i  is

the minimal equivalence relation on X that contains 8 .

Let I* be the set of equivalence classes induced by B1 . I

is clearly a partition of X. We will show that it satisfies conditions

(2.5) and (2.6).

Suppose there is a v C I* such that for some x, y E v we have

1 See the Appendix.

I ' I" I" "M- -
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s1 0 S Then partition v into the two nonempty sets

u {zCv S( S }x

u= {zE v: S 0 S1

If (z, ) E for some z E u and z E ' , this means that either

{z,} C v' C Ii' or {z,'1 C v" E I" for some v' and v" . In eitheri i
z zcase S - Si which is a contradiction. Thus (u xu) n s, is empty.ii

Now let be given by:

i (I'(-v)) U {u, .

Consider the equivalence relation induced by i.e.

SC" Q Y) E i X x : x, yCv for some vC~) . Then CBi

(because (u x ) is empty; and hence from 0 0* , and the con-

struction ofi ' we have 8i C )" On the other hand .ieis strictly

c This contradicts the minimality of 0 W have proved

that 1* satisfies condition (2.5).
i

To check (2.6) suppose that there are x, y E v E I* such that

iifor some u E Ii we have:

u x for some t E S .
t

We must then show that u 4 y also. Suppose not. Then define w and
t

w1 by:

w- (z Cv : u'( z)

w I - v*,w
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Both w and w' are nonempty by supposition. Moreover if (z, z') E B

for some (z, z') £ w x w', then either {z, z1) cv1 C I or

{z, z') a v" I . This contradicts respectively the fact that 11 and

I each satisfy condition (2.6). Thus (w xw') n o is empty. We now

proceed exactly as in the proof that (2.5) holds. Define iI by

- (I*-{v}) U {w, w') , and consider the equivalence relation SI induced

by i " Again it can be checked that 8 1 C8 E Bi , and 0 is strictly

contained in 01 , contradicting the minimality of 01 . Therefore we

conclude that I* satisfies (2.6).

So if we put r* {I then r* E A(T) . It is clear from

our construction that r* -a r' and r*. r" . Q.E.D.

Putting the two lemmas together we easily get

Proposition 1. There is a unique minimal element of -3 in A(T) .

Proof. Every totally ordered set in A(T) has a lower bound1 in A(T)

by Lemma 1. By Zorn's lemma1 there is a minimal element r* of - in

A(T) . Suppose ? is another minimal element in A(T) with r*-# ? .

Then by Lemma 2 we can find a r in A(T) such that t-3 ? and r- r*

Clearly r o r* which contradicts the fact that r* is a minimal element

of -4 . This proves that r* is the unique minimal element of -4 in

A(T) .Q.E.D.

If condition (2.7) is used in place of (2.6) then Proposition 1

breaks down. Consider the following 1-person extensive form in which the

1See the Appendix.

*-1
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FIGURE 5

moves at all the positions are identical. Then, assuming only (2.6) there

are two minimal information patterns

FIGURE 6 FIGURE 7

Remark

(3) The counterexample reinforces the view expressed in Remark (2). The

non-uniqueness of minimal information is unnatural and arises from

the (incomplete) model of players who do not have "perfect recall."
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4. NASH EQUILIBRIA AND INFORKATION PATTERNS

4.1. The Definition of a Nash Equilibrium

From now on, we will focus on the effect on Nash Equilibria that

is caused solely by changes in the information pattern of an extensive

game. First let us recall the notion of a Nash Equilibrium. Fix a game

x

r - (N, X, w, {S }xex' ( {hiliEN' {IiiEN)

as in Section 2.1. Let z(r_) be the set of all {sx ,EX which satisfy

xE S' for all x . Any {s x I z E z(r_) gives rise to a play

x 0  x1  x
p(z) - (s O s , ... , s , ... ) by the rule:

xI W 0-l(s
x O

Xk+1 = (s , ...,s , for k > 1

The strategy-set of a player i is made up of all possible choices

of moves available to him in Xi , under the proviso that he must make

the same choice at positions that are indistinguishable in his information

partition. It is the set SI consisting of all maps s from X to U S

which satisfy:I CII

M1) si(x) E S

(ii) si(x) - si(Y) if x, y E u E I •

The choice z - {sx)XEX in z(r) is said to be feasible in r if

the induced maps Ti belong to Si for each i in N , where

Ti(x) - s for x 6 . Let ZF(r) denote the set of all z in z(r_)

that are feasible in r . We assume throughout that ZF(r) is not ep.

For any z - xCX in z(r_) and ti C S
i  (zit ) is the element
9A
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of z(r) obtained from z by replacing player i's choices in accordance

with ti ,i.e., (zlt) = {qx xq}eX where

xs if J E N\{i and j E w(x)

S= (x) if J ii and j E w(x)

Clearly (ziti) is in z(r) ; by (2.2), it is also in ZF(r) if z is.

We will call z E z(r_) a Nash Equilibrium (N.E.) of r if

(4.1) z is feasible in r (i.e., z E ZF(r) );

(4.2) for each i E N , hi(P(Zt)) < hi(p(z)) for all ti E Si

The play p(z) produced by an N.E. z of r will be called a Nash play

of r

Remarks

(4) It is clear that P(r_) - {p(z) : z E z(r_)) . Later on we will need

to talk about the set F(r) of feasible plays, F(r) - {p(z) : z E ZF(r)}

(5) It must be stressed that we do not think of an N.E. of r as a possible

solution if r is played once. Instead, we interpret an N.E. as a

stationary state that may accrue if r is repeated several times.

This repetition of r is also an extensive game r* . To consider

an N.E. of r* we are now obliged to think of a repetition of r*

itself. This goes on without and tbere is no largest game to which

an N.E. can be applied. For a fuller discussion of this interpreta-

tion see 15], [6].
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4.2. The Nestedness of Nash Equilibria under Refinement

For much of the remainder of this paper we shall be concerned with

a pair of games r , in 1 A(T) with r-i ? . In this case we 'ill

use the symbols Si' and I1 ' 1k to denote the strategy sets and

information partitions of player i in r , ? respectively.

If r , there is a natural sense in which Si : simply

identify si E Si with s E where i (x)- I (x) for any x E X, .

We first show that not only the strategy-sets but also the N.E. are nested

under refinement of information.

Proposition 2. If r-3 (for r , in A(T) ), then any N.E. of

r is also an N.E. of

Proof. Let z - {sX}xEX E Z be an N.E. of r . Define z I {) X x by

sx for all x . Then z is feasible in . Also it is easily

checked that p(z) - p(z) . If z is not an N.E. of , then for some

player j there is a q E V such that

(i) h i(p(zlq )) > h ip(b))-

Let {u k k -where, possibly, k = --be the information sets of player

j in through which the play p(zlqj) "passes." (If
x0  xm

(r ,...,r ,...) is a play and, for some I , x is in an informa-

tion set u of j , then the play is said to "pass through" .) Clearly
L k

{u }£Iis not empty, otherwilse p( [ qJ) p(z) , contradicting (i).

Let Ii, i be the information partitions of j in r,? .

For each I , there is a unique ut E I such that u a u . Moreover,A k
by (2.6), the sets {u ) =' are disjoint. Define q C SJ by:

1 Where T and A(T) are as in Section 3.
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qj(x) (y) if y 6 u and x IE

and, for other x E Xi , qj() is arbitrary subject to the condition

(2.5). (There is no problem in doing this.) Then p(zlqj) - p(z aj)

therefore:

h i(p(zlqj)) - hj(p('z"'q))

> hj (p(,))hj= hIj (pz)

contradicting that z is an N.E. of r . Q.E.D.

This proposition was established in a somewhat less general context

in [3], though by essentially the same proof. It shows that, if we refine

information, the N.E,'s of the coarse game are not lost. But there is no

dearth of examples to convince one that, more often than not, there is a

rapid prcliferation of new N.E.'s. Consider:I

1 For a more interesting example, drawn from an economic context, see [1].
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FIGURE 8

The numbers at the ending positions give the common payoff to each of the

three players. Consider the three games rI , r , r3  with the infor-

mation patterns given below.

FT 
x

FIGURE 8. The am r 1
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FIGURE 9. The Game r2

3

2X

FIGURE 1. The Game r3

• ,The Nash plays in each case are marked by X . Those of r£are preserved
Sin r I  (t - 1, 2) in accordance with Proposition 2.

12

3 

I
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4.3. No Informati-nal Influence

We are interested in investigating conditions under which this pro-

liferation of Nash plays is arrested. The next two propositions make an

advance in that direction, and constitute partial converses to Proposition 2.

r is fixed as in Section 4.2. Take any z - (sX}xEX E z(r_)

Let i and j be two distinct players. We say that i has no informa-

tional influence on j at z in r (and denote this by " i # j mod z, r ")

if:

(4.3) for any s E Si, the path p(zlsi) passes through

exactly the same information sets of player j

x x xm
In other words if p(z) = (s s ,...s) and

YO Ym

p(zlsi) = (ry , r , ... , r , ... ) (where Y0  x 0 ), then we require

that

x£ E u i IE 1- y u i Ij

Also define i has no informational influence at z in r if:

i j mod z, r for all j E N-{il ;

and i is not informationally influenced at z in r if:

j i mod z, r for all j E N{i} .

If N is finite then, by (2.4), F(r) - P(r) . The same conclu-

sion can be derived (in the appropriate setting with A(T) replaced by

V(L) --see Lemma 3 in Section 5) if N is non-atomic. Thus the stipu-

lation (d) of the forthcoming Proposition 3 is a bit of a red herring.

1
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But, given the very general setting in which we are at the moment, there

does not seem to be a way to avoid it.

Proposition 3. For r , in &(T) suppose: (a) r-j , (b) I is

an N.E. of , (c) no player has informational influence at z in

(d) p(z) E F(r) . Then there exists an N.E. z of r such that

p(z) - p()

Proof. Let {u i() be the information sets of player i in ? through

which the play p(z) passes. (We allow k() to be empty or infinite.)

Denote by ul the information set of i in for which ui c ut.

By (d) there is a z E ZF(r) such that p(z) = p(l) . Then it must be

that

x 's~ i if x Eu 1  and y Eu 1

If z is an N.E. of r , we are done. If not, there is some player i

and q E S1  such that

h (p(zlqj) > h ipWO))

Construct q as follows:

qjx W q (x) for all x 6 X1,.

Clearly q E . We assert that p(zq j ) p(zq) .Put
P(z q )  0 X , x p(ziq, ) - (rXOr Yl YU
OR = (sx a s , 8. s .),r,..y , -..) 9

and p(") - (tO , t,....) . Also denote by li(x) the infor-

mation set of i in that contains x E X (where I

empty). No informational influence at z implies
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(xL) - (z ) for all i 6 .{j) , and all I

x rxO

It is clear that 8 0 r and thus x = Y1 Assume inductively that

xt M Y, for £ - 1, ..., k . Then by (*) and our construction of z ,

we get:

'k Yk
s, a ri for all i E 7(xk),{ J }

If j E it(xk) , then q,(xk) - qJ(x k ) by construction. Thus xk = ryk

and, therefore, Xk+l = Yk+l This proves that P(z cq) p(ziqj)

But then h (p(zlqj)) - hj(p(zlqj)) > h (p(z)) - hj(p( )) , contradicting

that z is an N.E. of Q.E.D.

The condition (c) of Proposition 3 is undoubtedly severe, though

it is a natural one in the context of a "large number of small players,"

not necessarily non-atomic. To stress this last point let us give an ex-

ample of a finite-player game in which (c) holds. Suppose

N -{1, ... , 10001 . Let S-{1, ..., 5001 and T-{501, ... , 1000} . The

game r is as follows. First all players in S move simultaneously,

and each i E S selects a real number ri in the closed interval 10,1].

The players in S can observe I ri . But there is a grid on their scale
icS

which does not permit very fine measurements. They can tell only that

ri lies in one of the intervals
ics

10,10), 110,20), ..., [490,500)

After S has moved, then the players in T move simultaneously, and again

each of them can select a real number in [0,1] . Suppose there is a Rash

equilibrium in which ri - 145 . (One can easily concoct payoffs to

ics

[ II II ll I . ... , ,, ' -- ,,L - _ -- " . . .. . 9 ,
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make this so.) Then no player viii have any informational influence at

140 T)150

S

FIGURE 11. The Games r ,

this N.E. The resulting N.E. play is marked in Figure 11. If any one

player in S changes his strategy, this will change the play but no one

in T can observe it because the new play continues to pass through

[140,150) . If we call the above game ? and let r be its coarsening

in which players in T observe nothing (i.e. have the information set

marked by dotted lines in Figure 11) then all conditions of Proposition 3

are met.

It is worth noting that if the Nash play were to pass instead through

one of the "boundary points" 10, 20, ..., 490--or even sufficiently close

to them--then (c) of Proposition 3 would break down. At these points

information is "discontinuous" as a function of moves. This is a little

disconcerting. One often wishes to model each player with an intrinsic

bound on his capacity of observation, so that he cannot detect very small

changes in others' behavior. But the points of discontinuity reveal that

the extensive game model, taken literally, is not capable of expressing

this and needs to be modified. This will be the topic of [1].
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4.4. No Informational Loss

The conclusion of Proposition 3 can be obtained under a considerably

weaker hypothesis than "no informational influence" (at least in the case

when N is finite). Let r-s ? be as before. Consider a z I

in ZF(1) . For any u E let Ii(U) be the set in It for which

u a Ic(U). Let i(z) C ?i be defined by:

t(2) { v I p(IZi j) passes through v for some

a E Vj and j E }10)sj

We say that player I incurs no informational loss in going from to

r at z if

(4.4) v, E E JI( ) and v u I i( U) (

Intuitively we now allow i to detect changes of a single player's strategy,

but require that he remain capable in r of making all the distinctions

that he could in

Observe

i is not Informationally influenced in at z i0 1

incurs no informational loss in going from to r at z.

But, as examples later will show, the converse implication is not true.

Proposition 4. Suppose (a) r- ? for r, ? 6 A(T) , (b) I is an N.E.

of 2 , (c) no player incurs informational loss in going from r to

at z , (d) the player-set N is finite. Then there exists an N.E. of

z of r such that p(z) p(z)

.
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Proof. For each i E N, let

A -I (v) V, vC (Z)
^i " : 1 i

i I Ai•

Then define z- {s xEX by:

if x E u E Ai , y E v, u I ()

i arbitrary if x E Bi , subject to the condition

x y
s 0s if x, y E u E Bi

Given (c) the definition makes sense. Moreover since N is finite, we

have SX H fl SX by (2.2), hence z is feasible. The rest of the
iEwr (x

proof proceeds exactly as the proof of Proposition 3. We first check

(inductively, starting at x0 ) that p(z) - p(W) . If z is not an

N.E. of r , then we get a contradiction as before. Q.E.D.

Consider the games r , ? of Figure 11. Construct a new pair

', ' from them as follows. Leave all other data fixed, but let some

subset of the players in T have perfect information in both r' and

i.e., their information sets are singletons. Clearly Proposition 4

applies to r' ,
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5. NON-ATOMIC GANES

5.1. The Definition

We need to specialize the set-theoretic structure of r to treat

non-atomic games. The player-set N is now equipped with a non-atomic

measure. Precisely, we have a measure space {N,B,p} . B is an a-field

of subsets of N which includes the singleton sets {i) , i EN; is

a non-atomic probability measure on {N,B . Each Y x (for x E X ) is

also assumed to be a measurable space and Cx  denotes its a-field of sub-

sets. We now add the following conditions on the constituents of r

over and above those in Section 1, (i)-(vi).

I(vii) For any x E X , v(x) is a non-null set in B

(viii) For any x E X , there is a measurable correspondence fX from

2(x) to Yx , and S consists of all measurable selections

from f x, i.e., of all functions g : (x) * Yx which satisfy:

(a) g(i) E fx(i)

(b) g is measurable.

(ix) For any x, y C X , the set {i C N : y E Ii(x)l is measurable.

These conditions are fairly innocuous. The sine qua non of the

nonatomic assumption is in the next, and final, condition. It says that

null sets of players and their moves cannot be observed by any of the

others.
x 0  x 1  x YO, rY1 m

(x) If x - (a 0 , s, ... ,s ) , y- (r Y r , ... ,r ), and i N

satisfy (where y0  x0 ):

(a) x CyC v I4-y CvCEI i ,
x1 r I(b) If xV, yt vC It , then si  - r,

iS E 6 is called null if P(S)- 0; non-null if it is not null.

2 Sx is assumed to be always non-empty.
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(c) i((j E i(x ) n w(y,) :sXI r Y  -YOrN xt))

for 1 = 0, 1, m , then

xC v y I y v li.

This completes our definition of a non-atomic game. Note that (viii) easily

implies

(5.1) si  fX( )

(5.2) If w(x) is a disjoint union of w (X) and w2(x) , and

1 r1 (x) - y , g2 : 2(x) - y are measurable functions

which satisfy gl(i) E fx(i) for i w wl(x) , g2 (i) E f (i)

x
for i E w2(x) , then the function g :w(x) Y y1 , obtained

by putting together g1  and 92 , will belong to Sx

It can be checked that (vii)-(x) are consistent with the earlier

assumptions in (i)-(vi), i.e., there are models of games that satisfy

(i)-(x). See the example in Section 5.4.

5.2. Invariance of Nash Plays on Information Patterns

We will establish that if (i)-(x) hold for a game, then the Nash

plays are invariant of the information pattern that the game is endowed

with.

We prepare for this with

Levma 3. Let r satisfy (i)-(ix). Then P(F_) - F(r)
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x0  x1  x
Proof. Let p- (a , a , ...,s , ...)CP() . Put U, U ItN )iEir(x )

and U- UU . For x E U, , let
t-o

y (x) - {i E (x) : x E Ii(xt)}

By (2.6), if 1 0 1' , then y (x) n Yt (x) - * . By (ix), each
Y W(x is measurable. Therefore, by (vii), so is

a(x) 7W(x - UJ Y (x).

Let {qX},cx  be any element of ZF(r) , and now define z - {rxl X

by:

xl

si if x 6 UI and i E y(x) for some > 0,
x

qi if i E w(x) but I U y(x)
--0

Since {y (x)),=0  are disjoint, this z is well-defined. It can be

checked (inductively, starting at x ) that p(z) - p . It remains to

verify that E ZF (r) . It is clear that if x, y E u for some u E Ii

then ri - ri Therefore it is sufficient to show rx C Sx for all x E X

If x E XNU , then rx - qX and qX E Sx by assumption. If x E U I

for some I > 0 , then w(x) is the disjoint union of {yI(x));. and

a(x) . By (2.5) and (5.1), fx(i) - fxI(i) for I C yl (x) . Also, clearly

U W W(xx) . But then by construction, the map rx coincides with
L-mO

a on YW(x) for all I > 0 . Hence rx  is a measurable selection

from f x on y I Y(x) . On the other hand, rx  coincides with qX on

tw-o
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m(x) and is, a fortiori, a measurable selection from fX on a(x)

Therefore by (5.2), rx 6 Sx . Q.E.D.

Lemma 4. Suppose r satisfies (i)-(x), and z Z(r) . Then no player

has informational influence at z in r

Proof. Let z - {s x " . Consider tj, C Sk. Pat

x x x YO Yl Ym

p(z) (s , s 1..., and p(zl )  (r , r , ...,r .

where yo -= x0 " It wil suffice to show that for any I and any I E Vf{j) ,

if sand y - ( r ) then (a), (b), (c) of

(x) are satisfied. Make the Inductive hypothesis that we have shown this

for I - 0, 1, ..., k and consider the case L = k+l . Now

x 0  xk  (YO ryk

xk+ (s ... s ) and Yk+, ...,r . Then, by (x),

(d) Xk+l E v C I C v 6 1 for j E N .(J.

Hence

(e) ir (xk+ 1){jf J w(yk+).{j -Ak+,)

M() xk+l= r k +l for i E Ak+

From (e) and (f):

xk1 rYk+l}

Ak+l = {i w f(Xk+l) n w(yk+l) : 5 Ik+= r l

hence, since j({j1) 0

(5) P(Ak+1) = 1(1(xk+l)) =

This verifies the hypothesis for I - k+l . Q.E.D.

Fix a six-tuple L - {N, X, 0, S1)xCX , {hi~iN} for which all

the assumptions in (i)-(vi), as well as (vii), (viii) hold. Denote by

1For - 0 the hypothesis obviously holds.
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V(L) the set of all gams obtained by adding information patterns to L

subject to (2.5) and (2.6), as well as (ix) and (x). For any r C V(L)

let n(r) be the set of all its Nash plays.

Proposition 5. n(r) - n(?) for any r , in V(L)

Proof. Denote by {IiJiEN , (li'iEN the information patterns in r ,

. For each i E N , let I* be the common refinement of I and

i'i.e. ,

Ii  IV* ax , v NVA for some v E I and v 6E .
ii

Consider the game r obtained by adding I; to L . We will show that

r* C V(L) . Clearly I* is a partition of X . For any x, y E X:

{i E N : y C I*(x)} = {i E N : y C II(x) n Ii(x)) {i E N : y EI I(X))

{i E N :yC (x)} . Since each of the last two sets is measurable, so

is the first, and thus I* satisfies (ix). We omit the straightforward

sX0  X1  xcheck that I* satisfies (2.6). Finally take x (s , ..., s
rYO rYl Ym 

s c h ty-(r , r , ...,r ) , and i E N (where xo YO) suc that:

(a*) x Cv*I 1*
xL yL

(b*) If x , yE v* E I*, then si =Ms

(c*) Condition (c) of (x) holds.

In (a*) let v*m v n for v E Ii I .E , . Then x, C v* s x v,

and y, IC v* - yj E v . From this It follows that (a*) implies:

xC v C Ii y E Cv Ii ,

i.e., (a) of (x) holds for I . In the same manner (a) of (x) holds for

a and (b) of (x) holds for both I ' Ti . (c) is Independent of the
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information pattern and depends only on x and y . To sum-up, (a), (b),

(c) of (x) are satisfied for x , y * and I in both r , . Than

by (x),

(d*) x E v E Ii  y E v C I

(e*) x E v Iuy v

Sfrom (d*), y E w .Similarly, y E Z . Hence y E w* . In th same way,

y E w* =* x E w* . 'This proves that condition (x) is also iatisfied by r*.

Consequently r* E V(L)

By construction, r-3 r* and ?-3 r . By Proposition 2,

n(r) c n(r*) and n(?) c n(r*) Let z* be any N.E. of r* . In the

wake of Lemmas 3 and 4, we can apply Proposition 3. This tells us that

there are N.E.'s z in r and z in , such that p(z) - p(z*) - p(z)

Since z* was arbitrary, n(r*) a n(?) and n(r*) c (?) , therefore

W(r) - n(r*) - n(?) . Q.E.D.

5.3. A Variation on the Theme

The condition (x) is fairly stringent. Each player has no infor-

mational influence on others, not even on a null set. On the other hand

absolutely no assumption was made on the payoff functions in proving Pro-

position 5. We now relax (x) to (x)* but at the expense of having to add

conditions (xi) and (xii) below. Then Proposition 5 can still be retrieved,

as Proposition 5*.

Condition (xi) says, roughly, that if two positions diLf: r only on

account of null sets not containing a particular player i , then i

cannot intrinsically tell them apart.
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o 1 Xm rYO rYi Ym
(xi) If (x) -(s , , ... ,s ) and 0(y) (r r , .. , r 3)

satisfy, for i E w(x) (with yo = xo

xi yi

(f) ({J 6 W(x) n w(y9 ) s - rj 1) - z(w(x )) - i(w(y,)) for

= M 0, 1, ... , m ;

(g) for all - , 1,..., m, i E w(x£) iC 1(y 9 );

(h) for all I - O, 1,...,, 1 , w(x) s ri  ;

then i E w(y) and Si -S.

The next condition (xii) is on payoffs. It says that they depend

on plays "modulo" null sets.

x0  xl YO, y

(xii) If two plays p (s , s , ... ) and p' - (r, ... ) satisfy

x9.  y9.
(i) i ({j C T(x) w (y) :s I r }) - -vlx v(v(y9 )) for

M~ ~ WIEW(I y
all k > 0

(J) i E w(x)- i E ir(y,), for all > 0;
x9.  y9.

Mk i E w (x) - s i  r i  for all I > 0;

then h (p) - hW(p')

In the light of (xi) and (xii) we weaken (x) to:

(x)* No p informational influence. Each player i has no infor-

mational influence on almost all other players (i.e. all except

a null set).

Let L* be a six-tuple as before, but assume this time that the

assumptions (i)-(vi), (vii)-(ix), as well as (xi), (xii) hold. Define

V*(L*) exactly as V(L) but with (x) replaced by the weaker (x)*.

Proposition 5*. n(r) - n() for any r , ' in V*(L*)

I
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Proof. It is sufficient to show that for any N.E. z of r tbre is

a N.E. z of ? such that p(z) = p(z)
x 0  x 1

Let p(z) - (s , s ,...) . Select a z in F(?) such that
p('Z) - p(z) . This is possible by Lem 3.I I!

Suppose z is not a N.E. of . Then there is an a! E for

some i E N such that hl(P(Z]sj)) > h,(p(z)) . Let

p(zs ) =(ra
, r (Yo - Xo) .Then condition * mplies

Y Y

i(f* E )Tx ni~ r -t1 X 2 fo

. -t
for all t > 0.

Choose an s i E SA such that if Oe e (t , th ... , m)  satisfies
(f*) p(fj E n(y .) n w(w.) :r - tj ))- ((yk)) - (v(.t)) for

all i - 0, 1,, m;
(g*) for k - 0, 1, .. ,,m i 7 r(y) e-i E 7r(w ) ;

yo w(h*) for i - 0, 1, .. ,m ,if i E 7r(w)  then ri  ti

then s i(x) =sj(ym+l ) .Assumption (xi) ensures that this choice of asi
(qaso a Fo h

is possible. Let p(zls t) ( , q , ... ) , with a0 - x0 . From the
construction, it is clear that

(i*) for all o, k>0 2.1 E (a) nf y) .qTyr .(w.a

- J(T(y2. ));

(J*) for all t > 0 , iE v(at)-i w(yt) ;

(k*) for all t > 0 , if i w(a), then q .  r "

Therefore, by (xii), we have hI(p(zls1)) - hi(p( lsl)) . That is,

hi(p(zs >i(P() hi(p(z)) • This is a contradic-

tion. Q.E.D.

1. . . . ....- -|- I
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If (x), (x)* are violated then Propositions 5, 5* break down. Non-

trivial counterexamples can easily be obtained by modifying the "dilema

game with rumour" in [4].

The careful reader must ha-,e noticed that we have defined a Hash

Equilibrium by requiring that all-as opposed to "almost all"-players

1must be optimal in accordance with (4.2). This is because, in our opinion,

the very basis of an N.E. is individual optimization, and ignoring even

a single player would go against the grain of this notion.

5.4. Two Examples

2
5.4.1. The Anti-Folk Theorem

Let r be a non-atomic game in strategic form, i.e., w(xO) 0 N

and every s E Sx 0 constitutes an ending position. Further assume that

the condition (xii) holds. In this context that simply says:
x0  xo  x0  x0 x0 X

if ({j E N : sx 0 r }) = 0 and s 0 r then hi(s ) hi(r 0) ,

i.e., the payoff to any player depends on his strategy and the measurable

function of others strategies modulo null sets.

Consider an infinite repetition r of r , in Which each player

can observe at each stage the entire past history of (a) his own moves and

payoffs, (b) the measurable functions of others' moves, modulo null sets.

The payoffs to plays in ra are assigned by some rule (e.g., lim inf ,

discounted sum).. .it doesn't much matter. Then re satisfies (x)* (and,

also, of course (i)-(ix), (xi), (xii)). Consider the game r; obtained

by coarsening r as shown in the figure below, i.e., each player observes

nothing at the end of any stage in rc

lndeed this is why the "almost all" variations of assumptions (x), (x)*,
(xi), (xii) would not suffice for our Propositions 5, 5*.

For a further discussion of this topic see [5].
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r'

N

FIGURE 12

Now while rC  does not satisfy the perfect recall assumption (2.6), it

does satisfy (2.7). Thus, by virtue of Remark (1), Proposition 5*holds.
This says that the Nash plays of rz are identical with the Nash plays

of r If we denote the strategy set of I in r by Si then clearly

his strategy set in i; is (S ) , i.e. a strategy for him is to simply

pick an infinite sequence each of whose elements is in Si. It is a short

step from this to verify that the Nash plays of r* (hence of ro ) are

typically "small." Indeed if we assign the payoff to a play of rG by

the discounted sumI of payoffs in each stage, then it is obvious that

.1 2 s ... ) is an N.E. of r " each a is

an N.E. of r for I - 1, 2,....

This is in sharp contrast with the "folk theorem" (15), [7]). There players

have enormous informational influence, and a stupendous proliferation of

Nash plays is obtained in r

1 Assuming this will always exist, e.&. by requiring that the Payoffs are

uniformly bounded in r

a -:, I II [ I . . . . i i
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5.4.2. Strategic Market Games

The fact that it was the same game r being repeated is not actually

relevant to the above argument. Indeed let F refer to a sequence of

different non-atomic strategic games F1 , F2, ..., F , .... Assume again

that payoffs are defined in F by discounted sums. Our argument tells

us that

(sl, . s ) is an N.E. of Fr each a in an N.E.

of F for = 1, 2,...

and

Nash plays of r Nash plays of F

1

This may be of some interest in the analysis of market games, where typically

each round redefines the initial conditions of the next one. Our Proposi-

tions suggest that it may be possible to study questions of "growth" in

this setting without being devastated out-of-hand by the super-abundance

of Nash Equilibria.

On another note, our result shows that if in a one-period model

we were to let traders go in a discrete sequence to the market, the N.E.

would remain unperturbed by the sequencing. This perhaps gives a somewhat

more realistic flavor to the simultaneous move models that have mostly

been considered so far.

1For a survey, see [2).
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6. CONCLUDING REMARKS

(6) If there are chance moves in the game, and information patterns are

varied with the proviso that what a player knows about the outcome

of chance moves is constant, then the propositions of Sections 4 and

5 continue to hold. Thus we allow the variation depicted in Figure

13 but not the one in Figure 14. (In these figures the refined in-

formation is either the same as the coarse one or else indicated with

broken lines. Also C denotes a position for chance moves.)

° (-~.. ..........
"","", .................

C

FIGURE 13
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C

FIGURE 14

(7) The "invariance" result of Propositions 5, 5* in the non-atomic setting

immediately leads to the question: what do they imply, asymptotically,

for finite games? For the reasons that we have already pointed out

in Section 4.3, we cannot give an asymptotic version within the model

of this paper. Indeed there are examples of finite games that "con-

verge" to a non-atomic one, while the corresponding set of Nash plays

diverge (see [1]). To remedy matters, and to interpret the non-atomic

results asymptotically, we will introduce the concept of "bounded

capacity of observation." When that is added to the current model,

an asymptotic interpretation becomes possible.

(8s) The assumption that INI is finite was needed in Proposition 4 only

to ensure that the z constructed in the proof was feasible. Prob-

ably this Is also true if N is non-atomic provided we make suitable

additional assumptions on the game.

(b) Our proof (in Proposition 1) of the existence of a unique minimal

Information pattern does not carry over if N is non-atomic, i.e.,
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in the context of conditions (i)-(ix). This is because the applica-

tion of Zorn's Lemma may produce non-measurable sets. Again we feel

that with further assumptions on the game this problem can be over-

come and Proposition 1 retrieved. We have not worked out the details.

.7



46

APPENDIX

For convenience we state Zorn's Lemma. A binary relation R on

a set A is a subset of A x A . If (x,y) E R, we write xRy . R is

called:

(1) reflexive if aRa for all a C A

(2) symmetric if for all a, b E A aRb - bRa

(3) anti-symmetric if for all a, b E A , aR.b & bRa-s-a b ;

(4) transitive if aRb & bRc so aRc

(5) total if for all a, b E A , aRb or bRa

A binary relation on R is called an equivalence relation if (1), (2)

and (4) hold, and a partial ordering (a total ordering) if (1), (3), (4)

(& (5)) hold.

Zorn's Lemma. Let R be a partial ordering on A . Assume that every

totally ordered subset B of A (i.e., aRb or bRa for all a, b E B )

has a lover bound b in A (i.e., bRb for all b E B ). Then there

exists a minimal element a in A , i.e., aRa -a = a
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